Precoloring extension. I. Interval graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precoloring extension. I. Interval graphs

of the following general problem on vertex colorings of graphs. Suppose that some vertices of a graph G are assigned to some colors. Can this ‘precoloring’ be extended to a proper coloring of G with at most k colors (for some given k)? This question was motivated by practical problems in scheduling and VLSI theory. Here we investigate its complexity status for interval graphs and for graphs wit...

متن کامل

Precoloring extension on unit interval graphs

In the precoloring extension problem we are given a graph with some of the vertices having a preassigned color and it has to be decided whether this coloring can be extended to a proper k-coloring of the graph. Answering an open question of Hujter and Tuza [6], we show that the precoloring extension problem is NP-complete on unit interval graphs.

متن کامل

Precoloring extension on chordal graphs

In the precoloring extension problem (PrExt) we are given a graph with some of the vertices having a preassigned color and it has to be decided whether this coloring can be extended to a proper k-coloring of the graph. 1-PrExt is the special case where every color is assigned to at most one vertex in the precoloring. Answering an open question of Hujter and Tuza [HT96], we show that the 1-PrExt...

متن کامل

List precoloring extension in planar graphs

A celebrated result of Thomassen states that not only can every planar graph be colored properly with five colors, but no matter how arbitrary palettes of five colors are assigned to vertices, one can choose a color from the corresponding palette for each vertex so that the resulting coloring is proper. This result is referred to as 5-choosability of planar graphs. Albertson asked whether Thoma...

متن کامل

Precoloring extension for K4-minor-free graphs

Let G = (V, E) be a graph where every vertex v ∈ V is assigned a list of available colors L(v). We say that G is list colorable for a given list assignment if we can color every vertex using its list such that adjacent vertices get different colors. If L(v) = {1, . . . , k} for all v ∈ V then a corresponding list coloring is nothing other than an ordinary k-coloring of G. Assume that W ⊆ V is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1992

ISSN: 0012-365X

DOI: 10.1016/0012-365x(92)90646-w